

Blood 142 (2023) 4610-4612

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

637.MYELODYSPLASTIC SYNDROMES - CLINICAL AND EPIDEMIOLOGICAL

Early-Onset Myelodysplastic Syndromes (MDS) with Ring Sideroblasts (RS) without SF3B1 Mutations in Adults: Enrichment with Germline Variants in Genes Responsible for Congenital Sideroblastic Anemias

Sandra Novoa Jáuregui, MD¹, Tzu Chen², Sara Torres-Esquius, MSc³, Salvador Carrillo-Tornel⁴, Marta Santiago, MD⁵, Teresa Bernal Del Castillo, MDPhD⁶, Francisca Maria Hernandez, MD⁷, Alessandro Liquori, PhD^{8,5}, Ivan Martin Castillo⁹, Mar Tormo, MD¹⁰, Barbara Tazon, PhD¹¹, Adoracion Blanco¹², Laura Palomo, PhD¹³, Jose Cervera, MD PhD¹⁴, Francesc Bosch, MD PhD 15,16, David Valcarcel, MD PhD 17,1, Maria Diez-Campelo, MD PhD 18, Julia Montoro, PhD 19, Andres Jerez, MD PhD²⁰

- ¹Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- ² Hospital General Universitario Morales Meseguer, Murcia, Spain
- ³Vall d'Hebron Universitary Hospital, UCGH. Spain, Barcelona, Spain
- ⁴Hematology and Medical Oncology Department, University Hospital Morales Meseguer. CRH-IMIB, Murcia, Spain
- ⁵Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- ⁶Servicio de Hematología, Hospital Universitario Central de Asturias Instituto de Investigación del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, (IUOPA), Oviedo, Spain
- ⁷ Department of Hematology, Hospital Virgen de las Nieves, Granada, Spain
- ⁸Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- ⁹Clinic Universitary Hospital, INCLIVA, Valencia, ESP
- ¹⁰ Hospital Clínico Universitario de Valencia, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- ¹¹Department of Hematology, Department of Hematology, University Hospital Vall d'Hebron, University Autònoma of Barcelona (UAB). Experimental Hematology Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- ¹²Department of Hematology, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
- ¹³Experimental Hematology Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- ¹⁴.., Valencia, Spain
- ¹⁵Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- ¹⁶Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- ¹⁷Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebrón, Barcelona, Spain
- ¹⁸University Hospital of Salamanca, Salamanca, Spain
- ¹⁹Department of Hematology, Vall D'Hebron Hospital Universitari, Experimental Hema, Barcelona, ESP
- ²⁰Hematology Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain

Introduction:

Acquired mutations in SF3B1 gene in myeloid neoplasms are classically associated with the presence of RS in Pearl Stain, ineffective erythropoiesis, and favorable prognosis. Nevertheless, in up to 20-25% of adults diagnosed with MDS with RS (WHO 2017), mutations in SF3B1 are not found, and molecular grounds for the presence of RS remain to be ascertained. The objective of our study was to investigate whether the presence of RS could be associated with germline variants in genes responsible for congenital sideroblastic anemia (CSA). Methods:

Patients diagnosed with de novo MDS between 16-60 years of age without previous organ dysfunction were recruited from 32 centers of GEMSD since 2016. Whole exomes were sequenced using HiSeq4000-NovaSeq6000-Illumina, paired tumorgermline samples. Mean depth was 100x, with 150 million reads per sample and quality Q30a>95%. Variants were analyzed using a bioinformatics pipeline: filtering intronic and synonymous variants and those with a population frequency >1%. The mutational state of SF3B1 was determined by Sanger Sequencing and Next Generation Sequencing (NGS). Germline variants were categorized according to American College of Molecular Genetics (ACMG) criteria. The list of genes related to CSA explored in this study is shown in Table 1.

POSTER ABSTRACTS Session 637

Results:

Conclusions:

Among 239 cases of adults diagnosed with early-onset MDS (mean age at diagnosis: 48 years, range 16-60), 58 (24%) patients presented with RS in bone marrow (mean RS: 28%). Of these 58 patients, acquired mutations in SF3B1 were not found in 32 (55%). Nine out of these 32 (25%) harbored a germline variant (two variants in one case) in genes responsible for CSA (Table 2): SLC25A38 (n=2), STEAP3 (n=2) FECH, ALAS2, GLRX5, SLC19A2, TRNT1 and IARS2. This frequency was statistically higher than in the SF3B1 and RS mutated group (n=23), with only one case with a germline variant in a CSA gene (p=0.013). It was also higher than in the non-RS cases (n=181), with only one case in this group (p<0.001). Using the Fisher's exact test, commonly used to perform enrichment, the odds ratios were also significant (p=0.033 and p<0.0001), respectively. Among patients with RS, those carrying a CSA gene germline variant were younger (43 vs. 54 years, p=0.04), had a higher rate of neutropenia (1.8 vs. 2.6 x 10E9/L, p=0.02), and thrombocytopenia (151 vs. 259 x 10E9/L, p=0.03) than MDS-RS patients with SF3B1 mutated. Furthermore, MDS-RS with a germline variant in CSA genes had a lower mean percentage of RS than patients who acquired the mutation in SF3B1 (14% vs. 38%; p=0.003).

In our series, the frequency of MDS-RS without SF3B1 mutations is higher in early-onset adult MDS than the one reported in MDS in advanced age. Whole exome analysis allowed us to describe, for the first time, a significant enrichment of variants in genes causing CSA in young adults with RS and without acquired mutation in SF3B1.

Disclosures Tormo: Pfizer: Honoraria; AbbVie: Honoraria; Astellas: Honoraria; BMS: Honoraria; MSD: Honoraria. Bosch: BeiGene: Consultancy; Roche: Honoraria; Lilly: Consultancy; Mundipharma: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Karyospharm: Other; Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria. Diez-Campelo: BMS/Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory board fees; Gilead Sciences: Other: Travel expense reimbursement; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees. **Jerez:** Novartis: Consultancy; Astrazeneca: Research Funding; GILEAD: Research Funding; BMS: Consultancy.

CSA GENES	
ALAS2	
SLC25A38	
ABCB7	
GLRX5	
PUS1	
YARS2	
SLC19A2	
TRNT1	
FECH	
COASY	
HEPHL1	
PAFAH2	
STEAP3	
IARS2	
SARS2	

Table 1. List of genes responsible for CSA which were interrogated for the presence of mutations in 236 WES tumor-germline matched MDS cases with a diagnosis between 16 and 60 years.

	AGE	%RS BM	GERMLINE VARIANT	CHR	NUCLEOTID EXCHANGE	AMINOACID CHANGE	VAF (%)	MAF	CADD	REVEL	ACMG	OTHER CONCOMITANT GERMLINE VARIANTS
RS-SF3B1 ^{MUT}	30	95	TRNT1	3	c.1292T>C	p.lle431Thr	53	0,01	24	0,152	VUS	ATM, VWDE,
												IL17RA
RS- <i>SF3B1^{WT}</i>	19	17	FECH	18	c.380A>G	p.Glu127Gly	50	<0,01	26	0,876	VUS	MLH1,
												TXNDC11, NPAT
	28	40	SLC25A38	3	c.683G>T	p.Gly228Val	49	<0,01	29	0,915	LP	RYR1, NF1
			ALAS2	Х	c.509G>A	p.Arg170His	44	<0,01	29	0,977	LP	
	49	24	GLRX5	14	c.185C>T	p.Pro62Leu	59	<0,01	25	0,370	VUS	JAK2
	32	2	SLC19A2	1	C.926A>G	p.Tyr309Cys	44	<0,01	29	0,874	VUS	ATP10B
	50	4	SLC25A38	3	c.415G>T	p.Val139Phe	44	<0,01	24	0,624	LP	TRERF1
	60	2	TRNT1	3	c.1292T>C	p.lle431Thr	35	0,01	24	0,152	VUS	TSPAN3
	35	6	STEAP3	2	c.1217C>T	p.Ser406Phe	57	<0,01	32	0,850	VUS	MLH1, BRIP1
	19	17	STEAP3	2	c.1096C>T	p.Arg366Trp	53	<0,01	25	0.716	VUS	none
	54	5	IARS2	1	c.2126T>G	p.Arg471Pro	41	<0,01	25	0.631	VUS	DDX41

Table 2. Germline variants in genes related to CSA in 58 cases of early onset MDS-RS in adults. Ten out of eleven variants were present in the subset of patients without SF3B1 mutations.

Figure 1

https://doi.org/10.1182/blood-2023-185836